MODEL JARINGAN SYARAF TIRUAN MEMPREDIKSI EKSPOR MINYAK SAWIT MENURUT NEGARA TUJUAN UTAMA

Saifullah Saifullah, Nani Hidayati, Solikhun Solikhun

Sari


This study aims to find the best architectural model in predicting palm oil exports according to the main destination countries. The role of the agricultural sector in the national economy is very important and strategic. Oil Palm is an industrial plant producing cooking oil, industrial oil, and bio-diesel fuel. Indonesia is the largest producer and exporter of palm oil in the world. In addition to the increasingly open export opportunities, the domestic market for palm oil and palm kernel oil is still quite large. Prediction is a process for estimating how many needs in the future. State revenues in the export sector must be able to be predicted to help set the state's financial regulations specifically on palm oil exports. By using Artificial Neural Networks and backpropagation algorithms, architectural models will be sought to predict the amount of palm oil exports according to the main destination country. This study uses 12 input variables, and 1 hidden layer. Using 4 architectural models to test the data to be used for prediction, namely models 12-4-1, 12-8-1, 12-16-1 and 12-32-1. The results of the best architectural model are architectural models 12-16-1 with 100% accuracy accuracy.

Kata Kunci


Palm Oil, Export, Prediction, Backpropagation, Artificial Neural Networks

Teks Lengkap:

PDF

Referensi


Agustin, M. (2012) ‘Penggunaan Jaringan Syaraf Tiruan Backpropagation untuk Seleksi Penerimaan Mahasiswa Baru pada Jurusan Teknik Komputer di Politeknik Sriwijaya’, Universitas Diponegoro, 02, pp. 4–32.

Febrina, M., Arina, F. and Ekawati, R. (2013) ‘Peramalan Jumlah Permintaan Produksi Menggunakan Metode Jaringan Syaraf Tiruan (Jst) Backpropagation’, Jurnal Teknik Industri, 1(2), pp. 174–179.

Kusmaryanto, S. (2014) ‘Jaringan Saraf Tiruan Backpropagation untuk Pengenalan Wajah Metode Ekstraksi Fitur Berbasis Histogram’, Jurnal EECCIS Vol. 8, No. 2, Desember 2014, 8(2), pp. 193–198.

Nurmila, N., Sugiharto, A. and Sarwoko, E. A. (2005) ‘Algoritma Back Propagation Neural Network untuk Pengenalan Karakter Huruf Jawa’, Jurnal Masyarakat Informatika, ISSN 2086-4930, 1(1), pp. 1–10. doi: http://dx.doi.org/10.14710/jmasif.1.1.

Pakaja, F., Naba, A. and Purwanto (2012) ‘Peramalan Penjualan Mobil Menggunakan Jaringan Syaraf Tiruan dan Certainty Factor’, Eeccis, 6(1), pp. 23–28.

Pratiwi, S. H. (2016) ‘Growth and Yield of Rice (Oryza sativa L.) on various planting pattern and addition of organic fertilizers’, Gontor AGROTECH Science Journal, 2(2), pp. 1–19. doi: 10.21111/agrotech.v2i2.410.

Sadono, D. (2008) ‘Pemberdayaan Petani: Paradigma Baru Penyuluhan Pertanian di Indonesia’, Jurnal Penyuluhan, 4(1). doi: 10.25015/penyuluhan.v4i1.2170.

Solikhun and Safii, M. (2017) ‘Jaringan Saraf Tiruan Untuk Memprediksi Tingkat Pemahaman Siswa Terhadap Mata Pelajaran Dengan Menggunakan Algoritma Backpropagation’, Jurnal Sains Komputer & Informatika (J-SAKTI), 1(1), pp. 24–36. Available at: http://ejurnal.tunasbangsa.ac.id/index.php/jsakti.

Sudarsono, A. (2016) ‘Jaringan Syaraf Tiruan Untuk Memprediksi Laju Pertumbuhan Penduduk Menggunakan Metode’, Media Infotama, 12(1), pp. 61–69.

Windarto, A. P. (2017) ‘Implementasi Jst Dalam Menentukan Kelayakan Nasabah Pinjaman Kur Pada Bank Mandiri Mikro Serbelawan Dengan Metode Backpropogation’, J-SAKTI (Jurnal Sains Komputer dan Informatika), 1(1), pp. 12–23.

Badan Pusat Statistik (BPS) Nasional, Online : www.bps.go.id. Diakses 07 Maret 2019.

Badan Pusat Statistik (2017) ‘Statistik Kelapa Sawit Indonesia 2017’, CV. Dharmaputra, Jakarta.


Refbacks

  • Saat ini tidak ada refbacks.


pISNN : 2355 - 701X

eISNN : 2540 - 8389

Creative Commons License This journal is licensed under a Creative Commons Attribution 4.0 International License

Flag Counter